Livre Maths Terminale Bac Pro Corrigé


Livre Maths Terminale Bac Pro Corrigé

livre apa ya arti nya ??????????

1. livre apa ya arti nya ??????????


buku jawabannya kakak .... livre artinya buku

2. c'est un livre artinya


Jawaban:

Artinya: Ini sebuah buku

Pembahasan

Digunakan kata sandang indefini, yaitu un. Mengapa begitu? Karena, livre yang mempunyai arti buku merupakan kata benda yang berjenis kelamin maskulin tunggal. Kata sandang indefini dapat diartikan sebuah, atau seorang. Kata sandang indefini dipakai untuk menyatakan suatu benda yang belum spesifik dalam hal keberadaan maupun jumlahnya.

Macam-macam kata sandang indefini:

Un (untuk benda maskulin tunggal).Une (untuk benda feminal tunggal).Des (artikel yang dipakai untuk benda maskulin maupun feminal yang berjumlah plural atau bendanya berjumlah lebih dari satu).

______


3. apa perbedaan penggunaan un dan le? misal c'est un livre apa bedanya dengan c'est le livre? mohon bantuanya kak


Dalam bahasa inggris un berarti a seperti a banana
, sedangkan le merupakan bentuk maskulin dari the seperti the apple

Note: inget maskulin sama feminim nya un sama une dan le sama la

4. apa perbedaan 'she teaches maths' dan 'she teaching maths'​


Jawaban:

she teaches maths (Dia biasanya mengajar matematika)

She is teaching maths (Dia sedang mengajar matematika)

Jangan lupa di follow ya kak :)

Jawaban:

Kata tersebut memiliki perbedaan arti yaitu:

she teaches maths : Dia biasanya mengajar matematika

sementara → she teaching maths : Dia sedang belajar matematika.

Penjelasan:

.

.

Semoga Membantu~


5. Maths Problem Terlampir


Jawab:

Penjelasan dengan langkah-langkah:


6. QUIZ MATHS Terlampir


Jawaban:

130

Penjelasan dengan langkah-langkah:

27x + 28y + 29z = 363

karena 27 28 dan 29 adalah angka yang berdekatan maka 363 : (27+28+29) = 4,32

karena positif integer maka kita ambil bulatnya aja yaitu 4. Maka coba kombinasi angka 4 dan sekitarnya hingga dapat kombinasi

27 . 5 + 28 . 4 + 29 . 4 = 363

x = 5

y = 4

z = 4

maka

10x (5 + 4 + 4) = 100 x 13 = 1.300


7. Quiz "Kombinasi dari :• Maths​


MathsM = 1a = 1t = 1h = 1s = 1------- +

C = 5! / 1! (5 - 1)!

= 5! / 1! (4)!

= 120 ÷ 24

= 5C

Maths

C = n! / r! ( n - r )!

C = 5! / 1! ( 5 - 1 )!

C = 5! / 4!

C = 120 / 24

C = 5

8. QUIZ MATHS Pakai cara


(1/2 + 1/3 + 1/4 + ... + 1/2017) = a

(a + 1/2018)(1 + a) - (1 + a + 1/2018)(a)

= a + a² + 1/2018 + a/2018 - a - a² - a/2018

= a - a + a² - a² + a/2018 - a/2018 + 1/2018

= 1/2018


9. c'est ... livre du francais. yang bener pake un atau le??​


C'est [...] livre du francais

Terjemahan dari kalimat di atas adalah,

Ini [...] buku prancis

● Penjelasan,

Penggunaan "un" atau "le" tergantung situasi,

▪ Pada kalimat "C'est [...] livre du francais." digunakan "le" apabila objek "livre" yang berarti "buku" sudah pernah disebutkan dan pembicara tahu mana 'buku' yang dimaksud. Contoh percakapan,

[\ A: "quel livre avez-vous emprunté hier?"

(buku mana yang kemarin kamu ambil?)

[\ B: "le livre du français"

(buku perancis)

Pada percakapan di atas, A memberi gambaran 'buku' yang dimaksud, yaitu 'buku yang kemarin dipinjam'. Maka B akan menjawab dengan "le", B sudah mengerti mana 'buku' yang dimaksud karena A telah menyinggung 'buku' tersebut sebelumnya.

▪ Pada kalimat "C'est [...] livre du francais." digunakan "un" apabila objek "livre" yang berarti "buku" belum pernah disebutkan sebelumnya dan pembicara belum mengerti 'buku' mana yang dimaksud. Contoh percakapan,

[\ A: "Voyez-vous un livre ici?"

(apakah anda melihat sebuah buku di sini?)

[\ B: "Je ne le vois pas"

(aku tidak melihatnya)

Pada percakapan di atas, A menggunakan "un" karena kata 'buku' belum dijelaskan, dan B belum mengerti 'buku' apa yang dimaksudkan oleh A.

.

Kategori : Bahasa Perancis, kata sandang (artikel defini)

Kategori : Bahasa Perancis, kata sandang (artikel indefini)

.

----------j'espere aidér----------


10. QUIZ MATHS Terlampir


Jawab:

2575

Penjelasan dengan langkah-langkah:

[tex]\displaystyle {U}_{1}=1\\{U}_{2}=1+2=3\\{U}_{3}=1+2+3=6\\...\\{U}_{r}=\frac{r}{2}(r+1)[/tex]

misalkan :

[tex]\displaystyle {x}_{1}=\frac{1}{\frac{1}{{U}_{1}}}=1\\ {x}_{2}=\frac{2}{\frac{1}{{U}_{1}}+\frac{1}{{U}_{2}}}=\frac{2}{1+\frac{1}{3}}=\frac{3}{2}\\{x}_{3}=\frac{3}{\frac{1}{{U}_{1}}+\frac{1}{{U}_{2}}+\frac{1}{{U}_{3}}}=\frac{3}{\frac{4}{3}+\frac{1}{6}}=2\\...\\{x}_{n}=1+\frac{1}{2}(n-1)\\maka,\:{x}_{100}=1+\frac{99}{2}=\frac{101}{2}[/tex]

Sehingga :

[tex]\displaystyle {x}_{1}+{x}_{2}+{x}_{3}+...+{x}_{100}=\frac{100}{2}\left({x}_{1}+{x}_{100}\right)=50\left(1+\frac{101}{2}\right)\\=50\left(\frac{103}{2}\right)=25\times103=2575[/tex]

Cara lainnya adalah menganalisa bentuk dari soalnya, apabila diubah ke notasi sigma menjadi:

[tex]\displaystyle {x}_{1}+{x}_{2}+{x}_{3}+...+{x}_{100}=\displaystyle \sum_{N=1}^{100}\frac{N}{S}\\dengan\:\\S=\sum_{k=1}^{N} \frac{1}{\displaystyle \sum_{j=1}^{k}j}[/tex]

jumlah bilangan asli berurutan 1+2+3+...+k adalah [tex]\displaystyle \frac{k}{2}(k+1)[/tex]

Maka :

[tex]\displaystyle \sum_{k=1}^{N} \frac{1}{\displaystyle \sum_{j=1}^{k}j}\\=\sum_{k=1}^{N} \frac{1}{\displaystyle \frac{k}{2}(k+1)}=\sum_{k=1}^{N} \frac{2}{\displaystyle k(k+1)}\\=2\sum_{k=1}^{N} \frac{1}{\displaystyle k(k+1)}\\=2\sum_{k=1}^{N} \left(\frac{1}{k}-\frac{1}{k+1}\right)........\:\:Deret\:Teleskopis\\=2\left(1-\frac{1}{N+1}\right)\\S=2\left(1-\frac{1}{N+1}\right)\\\\\\Jadi, Jumlah\:deret\:pada\:soal\:adalah\:=\displaystyle \sum_{N=1}^{100}\frac{N}{\displaystyle 2\left(1-\frac{1}{N+1}\right)}\\[/tex]

Sehingga :

[tex]\displaystyle \sum_{N=1}^{100}\frac{N}{\displaystyle 2\left(1-\frac{1}{N+1}\right)}\\= \frac{1}{2}\sum_{N=1}^{100}\frac{N}{\displaystyle\left(\frac{N}{N+1}\right)}\\=\frac{1}{2}\sum_{N=1}^{100} (N+1)\\=\frac{1}{2}\times\frac{100}{2}\times(2\times2+(100-1)\times1)\\=25(4+(100-1))\\=25(103)\\=2575[/tex]


11. QUIZ MATHS Terlampir


Penjelasan dengan langkah-langkah:

x^2+y^2=6

(x+y)^2 - 2xy = 6

(x+y)^2 - 2(2+3akar2-(x+y))=6

(x+y)^2+2(x+y)-(10+6akar2)=0

rumus ABC

[tex]x + y = \frac{ - b + - \sqrt{ {b }^{2} - 4ac} }{2a } \\ = \frac{ - 2 + - \sqrt{4 + 40 + 24 \sqrt{2} }}{2} \\ = \frac{ - 2 + - \sqrt{44 + 2 \sqrt{288} } }{2} \\ = - 1 + - (3 + \sqrt{2) } \\ = 2 + \sqrt{2} \\ atau \\ = - 4 - \sqrt{2} [/tex]

lx+y+1l= 3+akar 2


12. - The student ( Not Study) Maths+ The Student don't study Maths?​


Jawaban:

Does the student study maths?

Penjelasan:

Semoga membantu ^•^

maaf klw salah

Jawaban:

(?) are the students study maths?

Penjelasan:

buat introgatif tobe nya didepan ya, gw bingung ini yg positif nya gada tobe


13. MATHS PROBLEM Terlampir


Misal: [tex] \displaystyle f(x) = \sqrt{x^2+4}+\sqrt{x^2-24x+153}[/tex]

[tex]\displaystyle \min\{f(x)\} = \dots?[/tex]

Penyelesaian:

Mencari turunan [tex] f(x) [/tex]

Turunan [tex]f(x)[/tex] bentuk [tex]f(x) = \sqrt{u}[/tex] adalah

[tex] \displaystyle \boxed{f'(x) = \frac{u'}{2\sqrt{u}}}[/tex]

sehingga

[tex] \displaystyle f(x) = \sqrt{x^2+4}+\sqrt{x^2-24x+153} \\ f'(x) = \frac{2x}{2\sqrt{x^2+4}}+\frac{2x-24}{2\sqrt{x^2-24x+153}} \\ f'(x) = \frac{x}{\sqrt{x^2+4}}+\frac{x-12}{2\sqrt{x^2-24x+153}} \\ f'(x) = \frac{x\sqrt{x^2-24x+153}+(x-12)\sqrt{x^2+4}}{\sqrt{\left(x^2+4\right)\left(x^2-24x+153\right)}} [/tex]

Cari titik stasioner [tex]f(x) \to f'(x) = 0 [/tex]

[tex] \displaystyle f'(x) = 0 \\ \frac{x\sqrt{x^2-24x+153}+(x-12)\sqrt{x^2+4}}{\sqrt{\left(x^2+4\right)\left(x^2-24x+153\right)}} = 0 [/tex]

Abaikan pembilang karena pembilang ≠ 0

[tex] \displaystyle x\sqrt{x^2-24x+153}+(x-12)\sqrt{x^2+4} = 0[/tex]

untuk mempersingkat, dimisalkan

[tex] \displaystyle a=x^2-24x+153 \\ b=x^2+4[/tex]

sehingga

[tex] \displaystyle \left(x\sqrt{a}+(x-12)\sqrt{b}\right)^2 = 0 \\ ax^2+2x(x-12)\sqrt{ab}+b(x-12)^2 = 0 \\ \left(ax^2+b(x-12)^2\right)^2 = \left(-2x(x-12)\sqrt{ab}\right)^2 \\ a^2x^4+2abx^2(x-12)^2+b^2(x-12)^4 = 4abx^2(x-12)^2 \\ a^2x^4-2abx^2(x-12)^2+b^2(x-12)^4 = 0 \\ \Big(ax^2-b(x-12)^2\Big)^2 = 0 \\ ax^2-b(x-12)^2 = 0 \\ ax^2-b(x^2-24x+144) = 0 \\ (a-b)x^2+24bx-144b = 0 \\ \Big(x^2-24x+153-x^2-4\Big)x^2+24x(x^2+4)-144(x^2+4) = 0 \\ (-24x+149)x^2+24x^3+96x-144x^2-576 = 0 \\ -24x^3+24x^3+149x^2-144x^2+96x-576 = 0 \\ 5x^2+96x-576 = 0 \\ (x+24)(5x-24) = 0 \\ \begin{array}{lcl}x+24=0&\text{atau}&5x-24=0 \\ x=-24&\text{atau}&x=\frac{24}{5} \\ \bold{(TM)}&{}&{} \end{array}[/tex]

Uji [tex]f'(x)[/tex] dan abaikan pembilang karena pembilang pasti selalu positif (syarat fungsi bentuk akar)

[tex] \displaystyle \begin{aligned} \{x<\frac{24}{5}\}&: x=0 \to (0)\sqrt{(0)^2-24(0)+153}+((0)-12)\sqrt{(0)^2+4} &= 0+(-) < 0 \\ \{x>\frac{24}{5}\}&: x=12 \to (12)\sqrt{(12)^2-24(12)+153}+((12)-12)\sqrt{(12)^2+4} &= (+)+0 > 0 \end{aligned}[/tex]

Dari uji titik [tex]f'(x)[/tex], ketika diilustrasikan akan seperti ini dalam bentuk garis bilangan:

[tex] \displaystyle \boxed{\:\:\:\text{turun (-)}\:\:\:}\frac{24}{5}\boxed{\:\:\:\text{naik (+)}\:\:\:}[/tex]

Dilihat dari garis bilangan [tex]f'(x)[/tex], nilai [tex]\min\{f(x)\}[/tex] didapat ketika [tex]x=\frac{24}{5}[/tex] sehingga nilai [tex]\min\{f(x)\}[/tex]

[tex] \displaystyle \begin{aligned}\min\{f(x)\} &= f\left(\frac{24}{5}\right) \\ &= \sqrt{\left(\frac{24}{5}\right)^2+4}+\sqrt{\left(\frac{24}{5}\right)^2-24\left(\frac{24}{5}\right)+153} \\ &= \sqrt{\frac{576+100}{25}}+\sqrt{\frac{24}{5}\left(\frac{24-120}{5}\right)+153} \\ &= \sqrt{\frac{676}{25}}+\sqrt{\frac{-2304+3825}{25}} \\ &= \frac{26}{5}+\sqrt{\frac{1521}{25}} \\ &= \frac{26}{5}+\frac{39}{5} \\ &= \frac{65}{5} \\ &= 13 \end{aligned}\\[/tex]

Jawaban:

[tex] \displaystyle \boxed{\bold{\min\{f(x)\} = 13}}[/tex]


14. QUIZ MATHS PAKAI CARA


Jawaban:

π/6

Penjelasan dengan langkah-langkah:

Misal

81^(sin² x) = a

81^(cos² x) = b

a + b = 30

1 + 29 = 30

2 + 28 = 30

3 + 27 = 30 → coba yang ini

81^(sin² x) = 3

3^(4 . sin² x) = 3^1

4 . sin² x = 1

sin² x = 1/4

sin x = √(1/4)

sin x = 1/2

sudut x = 30°

81^(cos² x) = 27

(3^4)^(cos² 30°) = 3^3

4 . cos² 30° = 3

4 . (cos 30°)² = 3

4 . (1/2 √3)² = 3

4 . 3/4 = 3

3 = 3 (valid)

Maka, x = 30° atau x = π/6

Jawabannya A

Kode Kategorisasi : 10.2.6

Kelas 10

Pelajaran Matematika

Bab 6 - Trigonometri Dasar

Kata kunci : sin x, cos x

Jawaban:

A. π/6

Penjelasan dengan langkah-langkah:

81 sin²x = 3

3⁴ (sin x )² = 3

3 ( sin x ) = 3^½

sin x = ½

x = 30°

x = 30/180 π

x = 1/6 π

x = π/6


15. QUIZ MATHS Pakai cara


1 kg kopi A = 24000

1 kg kopi B = 38000

1 kg kopi campuran dg rasio 4 : 3

• A = 4/7 × 24000

• B = 3/7 × 38000

Jumlahkan = 1000 (96/7 + 114/7) = 30000/kg

Hrg jual 1 kg kopi campuran

= 125% × 30000

= 37500

Penjelasan dengan langkah-langkah:

harga :

A = Rp24.000,00/kg

B = Rp38.000,00/kg

asumsikan perbandingan tsb dalam satu kg

4A + 3B = 96.000 + 114.000

= 210.000

maka dalam 1 kg

= 210.000/7

= 30.000

untung 25%, maka harga jual :

= 30.000 + 30.000(25%)

= 30.000(1 + 25/100)

= 30.000(125/100)

= 300(125)

= 37.500

maka harga jual kopi campuran tsb perkilo adalah Rp37.500,00


16. QUIZ MATHS Pakai Cara


Penjelasan dengan langkah-langkah:

Misal :

Cici = c

Budi = b

Ani = a

Diketahui :

2 buah ≤ c ≤ 5 buah

b ≥ 2 buah

a ≥ 4 buah

Terdapat beberapa kasus :

1. c = 2 buah

Tersisa 10 buah, dengan susunan (a, b) :

(4, 6); (5, 5); (6, 4); (7, 3); (8, 2) = 5 cara

2. c = 3 buah

Tersisa 9 buah dengan susunan (a, b) :

(4, 5); (5, 4); (6, 3); (7, 2) = 4 cara

3. c = 4 buah

Tersisa 8 buah dengan susunan (a, b) :

(4, 4); (5, 3); (6, 2) = 3 cara

4. c = 5 buah

Tersisa 7 buah dengan susunan (a, b) :

(4, 3); (5, 2) = 2 cara

Seluruh cara :

2 + 3 + 4 + 5 = 14 cara


17. QUIZ MATHS terlampir


Jawab:

1003

Penjelasan dengan langkah-langkah:

[tex]\displaystyle f(x) = \frac{{9}^{x}}{{9}^{x}+3}[/tex]

Perhatikan bahwa :

[tex]\displaystyle f(x) + f(1 - x) = \frac{{9}^{x}}{{9}^{x}+3}+\frac{{9}^{1-x}}{{9}^{1-x}+3}\\= \frac{{9}^{x}({9}^{1-x}+3)+{9}^{1-x}({9}^{x}+3)}{({9}^{x}+3)({9}^{1-x}+3)}\\\\= \frac{{9}^{x}({9}^{1-x})+3\times{9}^{x}+9+3\times{9}^{1-x}}{9+3\times{9}^{x}+3\times{9}^{1-x}+9}\\=\frac{9+3\times{9}^{x}+9+3\times{9}^{1-x}}{9+3\times{9}^{x}+3\times{9}^{1-x}+9}\\\\=\frac{9+3\times{9}^{x}+9+3\times{9}^{1-x}}{9+3\times{9}^{x}+9+3\times{9}^{1-x}}\\\\=1[/tex]

maka :

[tex]\displaystyle f\left(\frac{1}{2007}\right)+f\left(1-\frac{1}{2007}\right)\\\\=f\left(\frac{1}{2007}\right)+f\left(\frac{2006}{2007}\right) = 1\\=f\left(\frac{2}{2007}\right)+f\left(\frac{2005}{2007}\right) = 1\\=f\left(\frac{3}{2007}\right)+f\left(\frac{2004}{2007}\right) = 1\\\\...\\...\\=f\left(\frac{1003}{2007}\right)+f\left(\frac{1004}{2007}\right) = 1[/tex]

[tex]\displaystyle \\-----------------------------------\:\:+\\\\f\left(\frac{1}{2007}\right)+f\left(\frac{2}{2007}\right)+f\left(\frac{3}{2007}\right)+f\left(\frac{4}{2007}\right)+...+f\left(\frac{2006}{2007}\right)=1\times1003\\\\=1003[/tex]


18. QUIZ MATHS Terlampir


Jawab:

[tex]\displaystyle \frac{1}{2}-\frac{1}{22!}[/tex]

Penjelasan dengan langkah-langkah:

Ubah ke bentuk notasi sigma :

[tex]\displaystyle \frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+...+\frac{22}{20!+21!+22!}\\=\sum_{n=1}^{20}\frac{n+2}{n!+(n+1)!+(n+2)!}\\=\sum_{n=1}^{20}\frac{n+2}{n!+(n+1)(n)!+(n+2)(n+1)(n)!}\\=\sum_{n=1}^{20}\frac{n+2}{n!(1+(n+1)+(n+2)(n+1))}\\=\sum_{n=1}^{20}\frac{n+2}{n!((n+2)+(n+2)(n+1))}\\=\sum_{n=1}^{20}\frac{n+2}{n!(n+2)^2}\\=\sum_{n=1}^{20}\frac{1}{n!(n+2)}.....(kali\:dengan\:\frac{n+1}{n+1})[/tex]

[tex]\displaystyle =\sum_{n=1}^{20}\frac{n+1}{(n+2)!}\\=\sum_{n=1+2}^{20+2} \frac{n-2+1}{(n-2+2)!}\\=\sum_{n=3}^{22} \frac{n-1}{n!}\\=\sum_{n=3}^{22} \frac{n}{n!}-\frac{1}{n!}\\=\sum_{n=3}^{22} \frac{n}{n(n-1)!}-\frac{1}{n!}\\=\sum_{n=3}^{22} \frac{1}{(n-1)!}-\frac{1}{n!}\\=\frac{1}{(3-1)!}-\frac{1}{3!}+\frac{1}{(4-1)!}-\frac{1}{4!}+...+\frac{1}{(22-1)!}-\frac{1}{22!}\\=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{21!}-\frac{1}{22!}\\\\=\frac{1}{2}-\frac{1}{22!}[/tex]

diubah ke bentuk persamaan sigma

[tex]\displaystyle\sum_{n=3}^{22}\frac{n}{(n-2)!+(n-1)!+n!)\\ = \sum_{n=3}^{22} \frac{n}{(n-2)!(1+(n-1)+(n-1)n}[/tex]

[tex]\displaystyle = \sum_{n=3}^{22} \frac{n}{(n-2)!(n+n^2-n)}\\ = \sum_{n=3}^{22} \frac{n}{n^2(n-2)!)\\ =\sum_{n=3}^{22} \frac{1}{n(n-2)!}[/tex]

[tex]\displaystyle = \sum_{n=3}^{22}\frac{n-1}{n(n-1)(n-2)!}\\=\sum_{n=3}^{22}\frac{n-1}{n!}\\ = \sum_{n=3}^{22}\frac{n}{n!}-\frac{1}{n!}[/tex]

[tex]\displaystyle\sum_{n=3}^{22}\frac{1}{(n-1)!} - \frac{1}{n!}\\ = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{3!} - \frac{1}{4!} + \dots + \frac{1}{21!} - \frac{1}{22!}[/tex]

banyak yang saling menghilangkan menyisakan

[tex]\displaystyle \frac{1}{2!} + 0 + \dots + 0 - \frac{1}{22!}\\ \boxed{=\frac{1}{2}-\frac{1}{22!}}[/tex]


19. QUIZ MATHS Pakai Cara


jadi jawabannya adalah

25. 4035

26. 61

Cara terlampir

25.) banyaknya x ∈ bil. bulat yang memenuhi = 4033

26.) b²+c² = (-6)²+(-5)² = 36+25 = 61


20. vous prene mon livre ? non,......​


Vous prenez mon livre? Non, je ne prendspas ton livre.

Pembahasan

La forme négative adalah suatu bentuk kalimat yang menunjukkan pernyataan yang bersifat penyangkalan, atau peniadaan terhadap suatu topik yang dibicarakan.

La forme négative (kalimat negatif) dalam bahasa Prancis, pola kalimatnya yakni:

subyek +n'/ne+kata kerja terkonjugasi+pas

Jadi, kalimat negatif dalam bahasa Prancis ditandai dengan adanya kata kerja terkonjugasi yang ditempatkan diantara partikel n'/ne dan partikel pas. Dibelakang partikel pas, kamu juga bisa menambahkan obyek atau kata benda supaya unsur kalimatnya semakin lengkap.

Contoh:

Je ne peux pas (saya tidak bisa/mampu).je n'aime pas cette personne (saya tidak menyukai orang itu).Je ne vole pas d'argent (saya tidak mencuri uang).

______

Detail jawaban

Level: Élémentaire - A1

Mapel: Bahasa Prancis

Kategori: Forme négative

Kode mapel: 17

Kata kunci: rumus, melengkapi kalimat dengan forme négative


Video Update


Livre Maths Terminale Bac Pro Corrigé Livre Maths Terminale Bac Pro Corrigé Reviewed by Romero on Desember 17, 2022 Rating: 5

Tidak ada komentar